
MOLA basics

A MOLA program, as any other model transformation program, transforms an instance of source
metamodel into an instance of target metamodel. These metamodels are specified by means of UML class
diagrams.
And similarly to many other transformation languages, the basic element of MOLA program is a rule, in
turn consisting of a pattern and actions. The specifics of MOLA lie in the readable, but very expressive
way how patterns are specified and in simple traditional control structures which determine the execution
order of rules.
The very first and simple MOLA transformation program in this tutorial will be used to demonstrate the
basics of MOLA patterns, rules and control structures organizing them.

Let us consider two natural ways how a simple directed graph can be coded.
The first way (A-coding) is a very basic one. A graph consists of Nodes and Edges, each Edge has exactly
one start Node and one end Node.
The second way (B-coding) in addition to Nodes and Edges contains also connection points (of kinds Start
and End). Any Edge here has a Start and End, and only these Starts and Ends are attached to Nodes (not the
Edges themselves).
The task is to define a transformation in MOLA, which for a graph in A-coding would build a B-coding of
the same graph.

At first these two ways of coding must be formalized in a metamodel – so that both kinds of coding
would be models according to this metamodel. MOLA uses very simple means to define a metamodel – a
UML class diagram consisting of classes, associations and generalizations. Classes can have attributes,
which can have UML primitive types (String, Integer, Boolean) and Enumerations (which also can be
defined in a metamodel) as their types. Associations have role names, multiplicities (and possible
composition specification). Generalizations have their traditional meaning, but only single inheritance is
supported. In general, it can be asserted that MOLA metamodel definition facilities are approximately those
of OMG EMOF [?].

Typically a metamodel in MOLA consists of source part and target part (sometimes called a source
metamodel and target metamodel). Fig1. shows the metamodel for the graph task, the source metamodel is
on the left, its classes are light yellow.

BNode

End

ANode

AEdge

Start

BEdge

mappedA
1 mappedB

1

connectedStart *

node
1

connectedEnd *

node
1

eStart1

outgoing
1

eEnd1

incoming
1

incoming *

endNode1startNode1

outgoing *

Figure 1. Graph metamodel

As expected, the source metamodel contains only two classes – ANode and AEdge, and two associations
linking an edge to its start node and end node respectively.
The target metamodel (on the right, dark yellow) contains the basic classes BNode and BEdge, classes Start
and End for the edge connectors and four associations linking these classes in a natural way. The metamodel

is so simple that attributes are not used at all. The metamodel contains also one association, linking classes
in source and target metamodels. This is a so-called mapping association, its role for the transformation
process will be described later.

To illustrate how a source model actually A-codes a graph, an instance (object) diagram corresponding to
the metamodel for a simple directed graph is shown in Fig.2.

This source model example (A-graph) will be used later to illustrate the transformation behavior.

a1:ANode

e1:AEdge
e2:AEdge

a2:ANode a3:ANode

startNode
startNode

endNode endNode

a1

a2 a3

e1 e2
a1

a2 a3

e1 e2

Figure 2. Source model example (A-graph)
It should be noted that node and edge names are used just for visualization, it is not an attributed graph.

MOLA Pattern basics

The simplest MOLA pattern - consists of one Class element - a class from metamodel and an element
name (a kind of "variable").

Here the class is ANode (and name is a). A notation
somewhat reminding UML object notation is used for
class elements. The pattern is contained in a rule (a grey
rounded rectangle).

a : ANode

When the rule is executed on the model, this trivial pattern matches to all instances of ANode - a1, a2 and

a3 (ai here is not the name attribute, but just some "internal" instance identifier).

In MOLA such indeterministic match situation is rarely used. A more realistic situation is that a loop
(bold rectangle) is built on the basis of that rule, which iterates over all possible matches. One class element
is marked to be the loop variable (bold) - namely all matches of it matter.

The loop is executed 3 times on the model (and
does nothing) - once for each match of an
ANode instance

a : ANode

More on rules and loops

A rule in MOLA (and other transformation languages too) typically not only does its pattern match, but
also performs some actions - creates a class instance, creates a link, deletes an instance (or link), modifies
attribute values of an instance (any combinations of these).

In MOLA a loop contains one main rule (which is called loop head and contains the loop variable) and
possibly some other rules, which are also executed in each iteration (in this example there is only the loop
head).

Whenever a rule matches (or a loop head matches a current iteration), its actions are executed (using the
matched instances).

This rule (loop head) - extension of the
previous one - creates one class instance
(of the class BNode) and one link
(corresponding to the association
mappedA-mappedB) per iteration.

a : ANode b : BNodemappedB

Instance creation in MOLA is shown by the same class element (of kind create - red dashed border), link
creation - by link line (also of kind create - red). The correspondence of links to associations is shown by
role names - at least one of them.

Loop execution

When the loop is executed on the example model, the following transformation occurrs (3 iterations are
performed and 3 instances/links are created):

a : ANode b : BNodemappedB

a1:ANode

e1:AEdge
e2:AEdge

a2:ANode a3:ANode

startNode
startNode

endNode endNode

a1:ANode

e1:AEdge
e2:AEdge

b1:BNode b3:BNode

a3:ANode
a2:ANode

b2:BNode

endNode

startNode
startNode

endNode

mappedB mappedBmappedB

Figure 3. Loop execution
Thus this loop builds a BNode for each ANode and links them by the mappedB link - the first step in the

transformation of graph coding from A to B.
The association mappedB has been specially introduced in the metamodel as so-called mapping

association - its links will be used by the next step of the transformation to find the relevant instance of
BNode when an ANode is selected.

A loop with more complicated pattern

Here again (see Fig.4.) the loop variable (aEd:AEdge) must iterate over all instances of the class AEdge,
but the other part of the pattern - 4 class elements and 4 links must match too. Only such instances of AEdge
are used for iteration, where all other elements match - there must be two instances of ANode linked by
startNode and endNode respectively to the selected instance of AEdge and an instance of BNode for each of
the ANodes. But it doesn't matter, whether one or more instances of e.g. strtN:ANode exist for the given
instance of AEdge - it is a pure existence requirement.

aEd : AEdge

strtN : ANode endN : ANode

strtBN : BNode endBN : BNode

startNode

mappedB

endNode

mappedB

Figure 4. More complicated pattern

But for this example it is easy to see that for each instance of AEdge just one relevant instance of
strtN:ANode exists (linked by startNode), one instance of endN:ANode and so on - actually the other pattern
elements are matched uniquely, when an AEdge is matched (for the example there are just 2 matches - over
the result of the first loop).

This is a typical situation for MOLA - patterns should be built so that the choice of the loop variable
determines other pattern elements uniquely - but it is not strictly required by the language semantics - just a
good practice.

The complete rule

strtN : ANode

edgSt : Start

bEd : BEdge

edgEn : End

endBN : BNodestrtBN : BNode
endN : ANode

aEd : AEdge

startNode endNode

mappedB mappedB

connectedStart

eStart eEnd

connectedEnd

Figure 5. Complete rule

The actions in the loop (in fact, the loop head) build 3 instances and 4 links - thus a BEdge is built for
each AEdge, also the corresponding connection (Start and End) instances and the relevant links.
In the example 2 BEdges are built, when this loop is executed over the results of the first loop.

The complete MOLA program

a : ANode b : BNode

strtN : ANode

edgSt : Start

bEd : BEdge

edgEn : End

endBN : BNodestrtBN : BNodeendN : ANode

aEd : AEdge

mappedB

startNode endNode

mappedB mappedB

connectedStart

eStart eEnd

connectedEnd

Figure 6. Complete MOLA program

The only elements to be added to complete the MOLA program, are Start node and End node (both as in
UML activity diagram) and control flows. In the simplest case one flow arrow leaves each program element
(loop), but rules may have also two exits (branching, see later). The program is executed in the order the
control flows determine - the first loop (in its totality), then the second loop, which can rely on the results of
the first loop (created instances of BNode and mappedB links).

The result of transformation execution

The following set of class instances and links is obtained when the complete transformation is applied to

the example graph - the complete B-coding of the example graph has been obtained. The names of instances
are for readability only - they actually are not part of the model.

b2:BNode

a1:ANode

s2:Start e2:End
e1:End

e1:AEdge

a2:ANode

eb1:BEdge

s1:Start

b1:BNode

eb2:BEdge

a3:ANode

b3:BNode

e2:AEdge

endNode

mappedB connectedStart

eEnd

connectedEnd

eStart

connectedStart

eStart eEnd

connectedEnd
mappedB

endNode

mappedB

startNode
startNode

Figure 7. Result of transformation execution

Note that according to the specified metamodel mapping links between A and B elements have been built
only between the corresponding nodes - this kind of links was used for correct building of BEdges by the
second loop.

Brief description of MOLA

A transformation in MOLA consists of

- metamodel (class model), currently one class diagram
- one or more MOLA procedures (diagrams), one of which is the main

Facilities for describing the class model are those of standard UML class diagram, approximately at the

EMOF level (classes, attributes, associations, enumerations). Packages may be used for making class names
unique. Only single inheritance is permitted.

Currently the whole metamodel - both the source metamodel (defining the source models to be
transformed) and the target metamodel (defining the resulting models) must be built as one common class
diagram. There the mapping associations linking both parts of the metamodel can be (and typically are)
added.

MOLA procedures define the executable part of the transformation. The main executable unit within a
procedure is the already discussed rule, containing a pattern and actions. A procedure is built from rules
using constructs from traditional structural programming - loops (including the already mentioned Foreach
loop), branchings, procedure calls - all in a graphical form, reminding UML activity diagrams.

MOLA procedure - an executable transformation unit - may contain some simple declarations -
parameters and variables (primitive and class-typed) and the executable part.

The executable part is similar to UML activity diagram - it starts with a start node and contains:

loop symbols (Foreach and While)

rules

text statements

procedure calls (including external ones)

end nodes

Proced1(@x)

{x1="cim"}

Start, loop and call symbols can have one outgoing control flow arrow. Rules and text statements can

have one or two exits - the second one is labeled ELSE - this provides the traditional if-then-else construct.
End nodes have no exits. Several control flows may enter one symbol - it means the ordinary merging of
flows.

Loop body (the interior part of the loop box) starts with a rule - loop head (which for Foreach loops
contains the loop variable), but may be followed (via control flows) by all "independent" procedure elements
- rules, (nested) loops, text statements, calls. If a symbol within body has no exit, this means that body
actions for one iteration end here (end node is not used within loop body).

More on patterns

In the simplest case considered so far, a pattern in a loop head or rule was just a connected subgraph of
classes and associations (converted to class elements and links) from the metamodel. But in the general case
a pattern may be more complicated. Its elements may contain attribute constraints - boolean expression on
instance attributes, which must be true for an instance set to match the pattern. There may be NOT-elements
- specifying that there must be no instance linked to the other part of pattern in the specified way and NOT-
links - specifying that the given kind of link must not exist between these instances in order to match.

Another extensions are related to the element match order - for some patterns it is required in the current
MOLA version to add annotations (or compiler pragmas) to pattern elements or links. These annotations
help MOLA compiler to find the correct order of element match in a pattern. In future versions in most cases
this information will be deduced automatically from the metamodel. But sometimes annotations will be
useful as a manual optimization guide taking into account "cardinality facts" not expressible in a UML class
diagram. The next examples need not such annotations.

Another example

The topic is Database design – building SQL table definitions from a Class model.
Several modifications of this true MDA-related task are shown. All they use a simplified UML Class model
as the source model and a formalization of a fragment SQL database definition language as a target model.

The metamodels are the same for all versions of the task, but the transformation task specifications are
gradually growing more complicated (and more realistic) and so are the transformations in MOLA.

Metamodel

Table (in SQL)
name : String

Generalization (in Kernel)

TypedElement (in Kernel)

Class (in Kernel)
isAbstract : Boolean
isPersistent : Boolean

PrimitiveType
(in Kernel)

Property (in Kernel)
visibility : VisibilityKind
isOrdered : Boolean[0..1]
isComposite : Boolean[0..1]
low er : Integer[0..1]
upper : Integer[0..1]

Type (in Kernel)

FKey (in SQL)
name : String

Column (in SQL)
type : String
name : String

Enumeration
(in Kernel)

Association (in Kernel)

EnumerationLiteral
(in Kernel)

<enumeration>
VisibilityKind

private
protected
public
package

Element (in Kernel)

NamedElement (in Kernel)
name : String

typed
*type

0..1

ow ner1
fkeys
*

specialization
* general

1

class
0..1 ow nedAttribute

* order=true

ow ningAssociation0..1

ow nedEnd *

association
0..1

memberEnd
1..* order=true

*
references

1

ow ner1

cols
*

0..1
pkey 0..1

cols0..1
foreignKey0..1

enumeration 0..1

ow nedLiteral*
order=true

0..1
opposite0..1

generalization* specif ic1 0..1

attributeToColumn
*

1

classToTable 0..1

Figure 8. Metamodel
The domain part of the metamodel is the basic fragment (~EMOF) of the UML 2 Class model. Attributes

(Properties in MM) here are assumed to have only Primitive types and Enumerations as their types,
attributes are attached to the owning class via ownedAttribute association. An association end (also a
Property in the MM), on the contrary, always has another Class as its type. Navigability of an association is
specified by attaching the navigable end (Property) to the start class by the ownedAttribute association
(otherwise the end belongs to its association via OwnedEnd, but the association link is present always). Both
ends of an association are linked by the opposite link. The only extension of the metamodel is that a Class
has isPersistent attribute.

The target part contains only the basic notions of SQL – Table, Column and foreign key (FKey). Only
simple foreign and primary keys are used.

The first version of the task

In this version only the direct attributes and associations of a class are taken into account, inheritance is
ignored. Only persistent classes are converted into tables, and each attribute corresponds to a column. For
primary keys a special generated column is built, with a name derived from the table name.

Navigable associations are transformed to foreign keys (the reference is in the direction of navigability),
for them also a special column is added to the owning table. A foreign key references the table
corresponding to the navigation target class.

cl : Class
 (Kernel)
{isPersistent = true}

tbl : Table
 (SQL)
name:=@cl.name

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

{NOT}
assoc : Association
 (Kernel)

ProcessAttribute(@prop, @tbl)

assoc : Association
 (Kernel)

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

ProcessAssociation(@prop, @tbl)

cl : Class
 (Kernel)

tbl : Table
 (SQL)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @tbl.name + "_PK"
type := "String"

CompleteForeignKeys()

{Generate
 primary
key}

{Process
all
atributes}

{Process
all
associations}

classToTable

classToTable

association

pkey

association

ow nedAttribute
class

ow nedAttribute
class

Figure 9. Main procedure

cl : Class
 (Kernel)
{isPersistent = true}

tbl : Table
 (SQL)
name:=@cl.nameclassToTable

The first loop - a similar one to those in the previous example - builds a table for each pesrsistent class.

Two new elements are present. The attribute constraint {isPersistent = true}specifies that only those Class
instances match the pattern where this attribute has the given value. In general, any Boolean expression
involving class attributes may be used. The other is the assignment name:=@cl.name in the Table instance
creation element - here also any expression may be assigned to an attribute, there may be several
assignments. The prefix @cl shows that the name value from the matched Class is taken.

This loop again iterates over Classes - those which a Table instance attached (in the previous loop).

However, the loop head only "organizes" the iteration, the proper job will be done by other rules and nested
loops, with flows showing the execution sequence

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @tbl.name + "_PK"
type := "String"

pkey

This is rule, but with a trivial pattern - the reference @tbl simply shows that the previously matched (in
the loop head) instance is to be used (referenced) here. It is used to specify the end point of the new link and
as a qualifier in assignment.

This is a loop head of a nested loop over instances of Property, linked by ownedAttribute to the same

previously matched Class instance. In addition, these instances cannot have an association link to an
Association instance - in other words, there is no Association instance in the model, which would be linked
the specified way to the Property instance currently being matched. It is not hard to see, that namely such a
pattern selects only properties which are attributes but not association ends (both are ownedAttributes for the
current Class according to UML).

The subprocedure ProcessAttribute is invoked, using two previously matched instances prop and tbl as

actual parameters (see later in this procedure that types are OK). This call is executed for each iteration of
the nested loop.

Another nested loop, this time over those instances of linked Property, which do have an association link

to an Association instance (from the metamodel it follows that there is no more than one such). This way
only navigable association ends are iterated over - but not attributes. It should be noted that frequently a
nested loop is based on a "many-link" from an instance selected above (and appearing as a reference - here
@cl).

Another subprocedure call - for processing the given association

One more subprocedure call. Should be the final one, because other column types are referenced (see

details later)

Subprocedures

ProcessAttribute

This is the first of the subprocedures (Fig.10). It builds a column for an attribute (Property) and adds this
column to the given Table. Note the two parameter symbols - with type Property and Table respectively.
These are in-parameters (there are also inout ones). The ordering is shown by explicit numbers. Parameter
type match is as for OOP languages - the actual parameter must be of the given type or a subtype of it.
Other new element is a rule with nontrivial pattern and two exits. The first such rule checks whether the
passed Property instance has a PrimitiveType. If it is so (the pattern matches), the non-marked exit is taken
and corresponding "building rule" (which has no proper pattern) is executed. The reference to @pt may be
used here, since we know that the previous rule has matched. If the type of the Property is not primitive, the
ELSE exit is taken (and no match actually has occurred).

The other non-trivial rule acts in a similar way. Its ELSE-exit leads to an external procedure call - we
assume that there is an external procedure (not in MOLA, but in some OOP language, e.g., C++) ShowMsg,
which can display its String parameter value in a Windows message box. This procedure has to be compiled
together with MOLA (which also finally produces some C++ code). There are no proper I/O statements in
MOLA, therefore such a workaround is required for building user dialogs.

@prop : Property
[1]

(Kernel)

@tbl : Table
[2]

(SQL)

@prop : Property
 (Kernel)

pt : PrimitiveType
 (Kernel)

en : Enumeration
 (Kernel)

@prop : Property
 (Kernel)

@prop : Property
 (Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @prop.name
type := @pt.name

@prop : Property
 (Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @en.name
type := "String"

show Msg("Inconsistent class model:
Class attribute has nonprimitive type")

type
{ELSE}

type

{ELSE}

cols

attributeToColumn

cols

attributeToColumn

Figure 10. ProcessAttribute procedure

ProcessAssociation and CompleteForeignKeys

These two subprocedures has no new MOLA elements.
The first one - ProcessAssociation uses a rule with pattern (containing an attribute constraint {isPersistent

= true}). If the rule does not match (the selected Class instance - there is always exactly one such - is not
persistent), the procedure instantly exits - there is no ELSE exit for the rule. But such a reaction is
appropriate, since non-persistent classes are ignored in table building. It should be noted, that this procedure
is invoked inside the main table element building loop - for the the other association end (which may appear
later on during the iteration) nothing more than its table is required (all tables were built in the very first
loop).

The other procedure is an independent "postprocessor" loop over all FKey instances, it has no parameters.
It is built as a "postprocessor" (after the main loop has completed), since it uses a type (of the PK column)
from the table at the other association end (which could be unknown if this action were performed "inline"
the main loop). It should be noted that in this simple setting the required type actually is a known constant,
but the given solution is presented as a frequently used "design pattern" in MOLA. Note also the non-trivial
pattern in the loop head, which nevertheless actually matches for all instances of FKey - its role is to locate
the relevant environment, for use in the next building rule.
This completes the example description.

tblDest : Table
 (SQL)

fk : FKey
 (SQL)
name := @destCl.name + "_FK"

@tbl : Table
 (SQL)

@destCl : Class
 (Kernel)

destCl : Class
 (Kernel)
{isPersistent = true}

@prop : Property
 (Kernel)

@prop : Property
[1]

(Kernel)

{Build
foreign key}

@tbl : Table
[2]

(SQL)

type

classToTable

references

fkeys

refPK : Column
 (SQL)

refTbl : Table
 (SQL)

ow nTbl : Table
 (SQL)

fk : FKey
 (SQL)

fkCol : Column
 (SQL)
name := @fk.name
type := @refPK.type

@ow nTbl : Table
 (SQL)

@fk : FKey
 (SQL)

pkey

cols

cols

ow ner fkeys
references

Figure 11. ProcessAssociation and CompleteForeignKeys procedures

The second version of the task

In this version the inheritance is also taken into account, both for attributes and associations of a class.
Inherited elements are processed the same way as the direct ones. Only single inheritance is assumed for this
example.

Otherwise the transformation is specified the same way as in the previous example. Therefore the solution
is also quite similar, except for inheritance processing, which is done using recursive procedures - a natural
solution for "transitive closure" type of tasks.

Table (in SQL)
name : String

Generalization (in Kernel)

Element (in Kernel)

TypedElement (in Kernel)

NamedElement (in Kernel)
name : String

<enumeration>
VisibilityKind

private
protected
public
package

Class (in Kernel)
isAbstract : Boolean
isPersistent : Boolean

PrimitiveType
(in Kernel)

Property (in Kernel)
visibility : VisibilityKind
isOrdered : Boolean[0..1]
isComposite : Boolean[0..1]
low er : Integer[0..1]
upper : Integer[0..1]

Type (in Kernel)

FKey (in SQL)
name : String

Column (in SQL)
type : String
name : String

Enumeration
(in Kernel)

Association (in Kernel)

EnumerationLiteral
(in Kernel)

enumeration 0..1

ow nedLiteral*
order=true

typed
*type

0..1

ow ner1
fkeys
*

specialization
* general

1

class
0..1 ow nedAttribute

* order=true

ow ningAssociation0..1

ow nedEnd *

1

classToTable 0..1

subOw ner*
inheritedAttribute*

association
0..1

memberEnd
1..* order=true

generalization* specif ic1

0..1
opposite0..1

*
references

1

ow ner1

cols
*

0..1
pkey 0..1

cols0..1
foreignKey0..1

0..1

attributeToColumn
*

subType
* inheritedAssoc

*

Figure 12. Metamodel

Formally the same metamodel could be reused since the generalization was already present. But this
version requires two temporary associations - associations which are not present in the source model and
are not required in the result. They are used only by some transformation procedures - in this case, recursive
ones. The temporary associations (inheritedAttribute and inheritedAssoc) are in green color. The first
association is assumed to hold all inherited attributes, the other one - association ends. The use of temporary
associations (and temporary attributes for existing classes) is typical for more complicated transformations
in MOLA (and other transformation languages too).

Transformation - main

The general solution schema is the same as for the previous version of the task. Initial part of the main
procedure is literally the same.

tbl : Table
 (SQL)
name:=@cl.name

cl : Class
 (Kernel)
{isPersistent = true}

CompleteForeignKeys()

DeleteInheritanceInfo()

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @tbl.name + "_PK"
type := "String"

cl : Class
 (Kernel)

tbl : Table
 (SQL)

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

ProcessAttribute(@prop, @tbl)

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

ProcessAssociation(@prop, @tbl)

ResolveInheritedAttributes(@cl)

ResolveInheritedAssociations(@cl)

{Process
all
associations}

{Process
all
atributes}

{Generate
primary
key}

pkey

classToTable

classToTable

inheritedAttribute
subOw ner

inheritedAssoc
subType

Figure 13. Main procedure

ResolveInheritedAttributes(@cl)

ResolveInheritedAssociations(@cl)

The difference starts here where two recursive subprocedures are invoked for processing inheritance. The
procedure ResolveInheritedAttributes builds all inherited attributes of the given class - builds all links of
kind inheritedAttribute for this class (since the procedure is recursive, it may build these links also for some
other classes too, but it is not used). Similarly, the procedure ResolveInheritedAssociations builds all
inherited navigable association ends from a class (as inheritedAssoc links)

@cl : Class
 (Kernel)

prop : Property
 (Kernel)inheritedAttribute

subOw ner

Attribute processing is similar to the previous case, but based on the temporary association
inheritedAttribute found in the previous step. The pattern is simpler, since no more mix of attributes and
navigable association ends appears when forming the loop for properties.

@cl : Class
 (Kernel)

prop : Property
 (Kernel)inheritedAssoc

subType

Association processing is also similar, based on inheritedAssoc association.

Final part also similar, but a new procedure is added for "cleaning up" the model - in case of another

transformation would be applied to the model.

Recursive subprocedure for inherited attributes

@class : Class
 (Kernel)

property : Property
 (Kernel)

@class : Class
[1]

(Kernel)

@class : Class
 (Kernel)

@property : Property
 (Kernel)

{NOT}
assoc : Association
 (Kernel)

@class : Class
 (Kernel)

property : Property
 (Kernel)

property : Property
 (Kernel)

@genClass : Class
 (Kernel)

@property : Property
 (Kernel)

@class : Class
 (Kernel)

ResolveInheritedAttributes(@genClass)

@class : Class
 (Kernel)

gen : Generalization
 (Kernel)

genClass : Class
 (Kernel)

{Is there a superclass?}

{Single inheritance only!!!
Otherwise a loop would be
required}

{Make recursive call if there is a superclass}

{Delete old values for the
current class}

{Resolve all inherited attributes for a given class}

{Add inherited attributes from
superclass to the current class (the
superclass already has all its
inherited attributes)}

{Whether or no there are superclasses,
add class own attributes to the inherited
attribute list.
To deal with proper attributes only,
class-ownedAttribute association and
Association class is used.}

inheritedAttribute
subOw ner

inheritedAttribute
subOw ner

association

ow nedAttribute
class

inheritedAttribute
subOw ner

inheritedAttribute
subOw ner

specif ic
generalization general

specialization
{ELSE}

Figure 14. ResolveInheritedAttributes

@class : Class
 (Kernel)

property : Property
 (Kernel)inheritedAttribute

subOw ner

Delete links of this kind if they were set by previous invocations

ResolveInheritedAttributes(@genClass)

@class : Class
 (Kernel)

gen : Generalization
 (Kernel)

genClass : Class
 (Kernel)

{Is there a superclass?}

{Single inheritance only!!!
Otherwise a loop would be
required}

{Make recursive call if there is a superclass}

specif ic
generalization general

specialization
E}

A typical use of recursion for finding a transitive closure of a relation. If there is a superclass for the given

class, do the same for the superclass first.

property : Property
 (Kernel)

@genClass : Class
 (Kernel)

@property : Property
 (Kernel)

@class : Class
 (Kernel)

inheritedAttribute
subOw ner

inheritedAttribute
subOw ner

After the return from the recursive call, use the results of this call. Here, at least the direct atributes of the

superclass would be linked by inheritedAtribute, but more links could be built, if the inheritance stack is
higher.

@class : Class
 (Kernel)

@property : Property
 (Kernel)

{NOT}
assoc : Association
 (Kernel)

@class : Class
 (Kernel)

property : Property
 (Kernel)

inheritedAttribute
subOw ner

association

ow nedAttribute
class

Finally, perform the recursion basis - relink the direct attributes of the class via inheritedAtribute.

Attributes are separated from association ends as before.

It is easy to see that for classes high in the inheritance hierachy the given procedure actually will be

invoked many times during the execution of main loop. Here it could be avoided by adding a temporary
attribute (e.g., isOK) for Class in MM. But for a "changing environment" only this way is usable - temporary
associations need to be refreshed upon usage.

Subprocedure for inherited associations

A remark not related to this example - currently in MOLA if you delete the link "used" for locating the
loop variable (here inheritedAssoc) the loop variable instance is no more accessible for another usage in this
iteration - it must be stored in another variable if it is to be used after delete.

property : Property
 (Kernel)

@class : Class
 (Kernel)

@class : Class
[1]

(Kernel)

@class : Class
 (Kernel)

@property : Property
 (Kernel)

property : Property
 (Kernel)

@class : Class
 (Kernel)

assoc : Association
 (Kernel)

@class : Class
 (Kernel)

gen : Generalization
 (Kernel)

genClass : Class
 (Kernel)

ResolveInheritedAssociations(@genClass)

property : Property
 (Kernel)

@genClass : Class
 (Kernel)

@property : Property
 (Kernel)

@class : Class
 (Kernel)

{Resolve all inherited association ends for a given class}

{Make recursive call if there is a superclass}

{Single inheritance only!!!
Otherwise a loop would
be required}

{Delete old values for the
current class}

{Add inherited association ends
from superclass to the current class
(the superclass already has all its
inherited association ends)}

{Whether or no there are
superclasses, relink as inherited the
direct association ends for the class}

association

ow nedAttribute
class

specif ic
generalization general

specialization

{ELSE}

inheritedAssoc
subType

inheritedAssoc
subType

inheritedAssoc
subType

inheritedAssoc
subType

Figure 15. ResolveInheritedAssociations Procedure
This recursive subprocedure is very similar to the previous one, therefore no more comments are

necessary

Other subprocedures
ProcessAttribute – identical to the first version
ProcessAssociation – identical to the first version
CompleteForeignKeys – identical to the first version
DeleteInheritanceInfo – the double loop deletes any temporary link to a Property for any Class in the
model

cl : Class
 (Kernel)

@cl : Class
 (Kernel)

property : Property
 (Kernel)

property : Property
 (Kernel)

@cl : Class
 (Kernel) inheritedAttribute

subOw ner

inheritedAssoc
subType

Figure 16. DeleteInheritanceInfo procedure

This completes the second version of the example

Example summary

The three provided examples have illustrated the use and role of nearly all MOLA constructs (except Text
statements and use of variables). Also not all possible syntax elements of expressions in MOLA (for
constraints and assignments) have been demostrated, only the mostly used ones.

However, these uncovered features are quite unspecific to MOLA - they closely remind those in
traditional programming languages. The full syntax of MOLA can be found in the reference manual.

Also, the main "design patterns" in MOLA have been demonstrated - existential sematics of patterns, use

of nested loops for processing structured elements, use of rules for branching, use of NOT-elements as
negative constraints, use of temporary associations, recursive procedures for finding transitive closure, role
of loop "postprocessors". Certainly, there are more of them, but these seem to be the most used ones.

Another example

This example is from the area of tool building. UL IMCS has started a new project – Metamodel and

Transformation based Tool Framework (TTF). According to this framework a diagram presentation
metamodel is designed and an engine (Eclipse based) is built which can visualize a correct presentation
model (an instance set corresponding to this metamodel) – display a visible diagram containing the given
elements. In addition, this engine can intercept tool user actions upon this diagram (such as a request to
create new diagram element, edit data visible in a diagram element, move a diagram element etc.). Pure
"graphical" actions such as move are performed by the engine directly, but all "logical" actions are
converted into commands – special instances (or linked instance groups) which then are performed by
appropriate transformations. Thus a specific modeling tool functionality is determined by the standard
engine and the supplied set of transformations. These transformations actually determine the complete logic
of the tool – what elements can be created and where, how the modification of data is reflected into visible
diagram elements, what are correct data and so on.

In particular, these transformations have to maintain the mapping between a domain metamodel (such
as whole or part of UML metamodel) and the fixed presentation metamodel for this framework. The
mapping determines what kind of diagram element (node, part of node etc) corresponds to the given domain
element.

The complete presentation metamodel for TTF is quite complicated, but the Fig.1 shows the most
essential part of it – proper diagram element structure. There is the Diagram, which consists of Diagram
Elements – Nodes and Edges. Node is still an abstract superclass with its most important subclass being the
CompositeNode – an element such as class node, enumeration node in class diagram, action in activity
diagram and so on. A CompositeNode can contain Labels – text elements (such as class name, class
stereotype, one attribute line, enumeration name in class diagram). In addition, a CompositeNode can
contain a Compartment – a related group of Labels – such as the complete set of attributes for a class.

When a domain model element (class, enumeration,…) has been modified by the tool user via Property
dialogs (another part of presentation metamodel and engine, not shown here), transformations have to update
the relevant diagram elements – those to which the mapping links from the modified element go. This may
be one element in one diagram or several elements in several diagrams – as determined by links. In addition,
all updates to these diagram elements must be notified to the presentation engine – links must be set to a
singleton (i.e., a class which always has exactly one instance) class Changes. Some of the domain elements
must be visualized also in the project tree (determined by another part of the presentation metamodel and
another kind of mapping links) as DomainElementNodes. If an element is (or remains) selected, its attributes
appear in the appropriate fields of property dialog, including the Properties title.

In the example the domain metamodel is the most essential fragment of UML 2 Class model
(approximately equivalent to OMG EMOF metamodel). The example presents a solution to the following
task for Enumeration instances. After the user has modified an Enumeration name (via Property dialogs,
outside the scope of the example), at first it is necessary to check whether the new name is valid – it must be
unique within the containing package (which can also be the whole model). Then the enumeration name is
updated in the domain instance. The Enumeration instance may be visualized in one or more Class diagrams,
in all these places (i.e., the corresponding CompositeNodes) the name Label must be updated. In addition,
the enumeration may be used as a type for some attributes (Property instances), the Label corresponding to
such an attribute in a class CompositeNode (one or more) must also be updated accordingly. Finally, the
relevant DomainElementNode in the project tree and the Properties title must also be updated. All modified
presentation instances must be linked to Changes. One more general comment to the task is that a
DiagramElement is found to be of an appropriate kind via its diagElementKind_ attribute.

The main MOLA procedure for this task is upd_ModifyEnumName (Fig.2).

PrimitiveType
(in Kernel)

Class (in Kernel)
isAbstract : Boolean

Comment
(in Kernel)

body : String

PackagableElement
(in Kernel)

Type (in
Kernel)

Association (in
Kernel)

isDerived : Boolean

Generalization
(in Kernel)

Enumeration
(in Kernel)

EnumerationLiteral
(in Kernel)

name : String

TypedElement (in
Kernel)

Property (in Kernel)
visibility : VisibilityKind
isStatic : Boolean[0..1]
isOrdered : Boolean[0..1]
isComposite : Boolean[0..1]
low er : Integer[0..1]
upper : Integer[0..1]
isDerived : Boolean[0..1]

Package (in
Kernel)

NamedElement
(in Kernel)
name : String

Node (in graphDiagram)
shapeType : ShapeType
relativePosition : Integer
borderTop : Boolean
borderBottom : Boolean
fitToChildren : Boolean

Element (in Kernel)

Tab (in
properties)

name : String
tabKind_ : String

Model (in
Kernel)

JRObject (in
general)

Changes (in
general)

DiagramElement (in
graphDiagram)
id : String
lineStyle : LineStyle
lineWidth : Integer
selectable : Boolean
diagElementKind_ : String

<enumeration>
ParameterDirectionKind
in
inout
out
return

<enumeration>
VisibilityKind

private
protected
public
package

Edge (in graphDiagram)
startStyle : LineStartShapeType
endStyle : LineEndShapeType
routingStyle : ConnectionRouterType

Diagram (in
graphDiagram)

style : LayoutStyle
name : String
overlapAllow ed : Boolean
autoRoute : Boolean
jumpEdges : Boolean

Model (in
project)

name : String
type : String

CompositeNode
(in graphDiagram)
picturePath : String

Pin (in
graphDiagram)
atachmentType :
AtachmentType

SimpleNode (in
graphDiagram)

ProjectTreeNode (in
project)
text : String
icon : String
collapsed : Boolean
relativePosition : Integer

Label (in
graphDiagram)

text : String
alignment : Alignment
icon : String[0..1]
w rapText : Boolean

DiagramNode
(in project)

ModelNode
(in project)

DomainElementNode
(in project)

Project (in project)
name : String

ProjectNode
(in project)

Compartment (in
graphDiagram)

Properties (in
properties)

title : String
icon : String

<enumeration>
LineStyle

SOLID
DASH
DASH_DOT
DOT
NONE

<enumeration>
AtachmentType
at
on

<enumeration>
LayoutStyle

flow
universal

<enumeration>
Alignment

LEFT
CENTER
RIGHT

<enumeration>
LineEndShapeType

NONE
DIAMOND
FILLED_ARROW
ARROW

<enumeration>
LineStartShapeType
NONE
DIAMOND
FILLED_ARROW
ARROW

<enumeration>
ShapeType

RECTANGLE
ROUNDED_RECTANGLE
ELLIPSE
NOTE
CONVEX_FLAG
HEXAGON

<enumeration>
ConnectionRouterType
RECTILINEAR
OBLIQUE
TREE

ow ningAssociation

0..1ow nedEnd
*

specialization
*

general1

subOw ner
* inheritedAttribute

*subType
*

inheritedTyped *

ow nerClass
0..1 attribute

*

typed
*type

0..1

association
0..1memberEnd

1..*

order=true

0..1 opposite0..1

ow ningPackage
0..1 ow nedMember

*

enumeration0..1

ow nedLiteral *
order=true generalization *

specif ic
1 class

0..1

ow nedAttribute*
order=true

comment *

annotatedElement*

0..1changes

*

tabs*
order=true

diagram

1

elements
*

edge0..1

labels *

project

1

models

*

diagramNode0..1

diagram 1

model1

modelNode

1

0..1

activeDiagram

0..1

projectNode 1
project1

container 0..1

containedNodes

*

outgoingEdge*

startElement
1

incomingEdge
*

endElement
1

edgeTo
*

toEnd
0..1

present *

domain

0..1

treePres 0..1

treeDom 0..1

edgeFrom
*

fromEnd
0..1

parent

0..1

children

*
order=true

ow ner

0..1

ow nedDiagram

*

modelPres 1

modelDom0..1

element0..1

data0..1

Figure 1. Metamodel

@en : Enumeration
 (Kernel)

nlab : Label
 (graphDiagram)
{diagElementKind_="EnumNameLabel"}
text:=@new name

enn : CompositeNode
 (graphDiagram)

{single}
c : Changes
 (general)

@en : Enumeration
 (Kernel)

{single}
c : Changes
 (general)

entn : DomainElementNode
 (project)
text:=@new name

{single}
prp : Properties
 (properties)
title:=@qualPref+@new name

@newname : String
[2]

@en : Enumeration
[1]

(Kernel)

{references may include
attribute types !!}

{@isOK=true}

@en : Enumeration
 (Kernel)
name:=@new name

@isOK:=true

{Name uniqueness check}

upd_UpdateEnumReferences(@en)

utl_Qualif iedNamePref(@en,@qualPref)

show Msg("Enumeration name
not unique !")

utl_NameUniquePackgElem(@en,@new name,@isOK)

@isOK : Boolean

@qualPref : String

changes

changes

treePres
{1}

present

changes

containedNodes

{ELSE}

Figure 2. upd_ModifyEnumName procedure

upd_ModifyEnumName procedure receives as parameters from the general command manager
procedure the reference to the Enumeration instance to be processed (@en) and the new name (@newname,
a parameter in MOLA may also be of a primitive type). The procedure uses two primitive-typed variables –
@isOK and @qualPref. The @isOK variable is initialized to true value via a textual assignment, then
utl_NameUniquePackgElem is invoked (its third parameter is of in-out kind, currently there are no
proper functions in MOLA). The invocation results are analyzed in a textual constraint, in case of

uniqueness violation a message to user is shown by means of an external procedure invocation. If the check
is OK, a simple rule updates the domain instance. Then a loop is started over all CompositeNodes which
visualize the given Enumeration (i.e., are linked to it by the mapping link present). In all these nodes the
EnumNameLabel must be updated accordingly.

The invocation of upd_UpdateEnumReferences updates all attribute labels, where the attribute is
typed to this enumeration. The last rule updates the corresponding project tree node (mapped via treePres)
and the title of Properties (the enumeration is still reflected in Properties), but
utl_QualifiedNamePref must be invoked to display the full qualified name in the title.

The procedure utl_NameUniquePackgElem (Fig. 3) is quite straightforward, note only the use of
MOLA "existential semantics" for the sole rule – we must find at least one instance of PackagableElement
with "another identity" (self<>@el), but with the same name. If the pattern matches, there is at least one
such element – it doesn't matter, whether there is more. Note also the setting of the in-out parameter by a
simple textual assignment.

@isOK:=true

@el : PackagableElement
[1]

(Kernel)

@isOK : Boolean
[3]

@nstr : String
[2]

pck : Package
 (Kernel)

@el : PackagableElement
 (Kernel)

anyel : PackagableElement
 (Kernel)
{self<>@el and name=@nstr}

@isOK:=false

ow ningPackage
{1}

ow nedMember

{ELSE}

Figure 3. utl_NameUniquePackgElem procedure

The procedure upd_UpdateEnumReferences (Fig. 4) in a double loop updates all
AttributeLabel Labels, which visualize a Property, having this Enumeration as its type.

Finally, the procedure utl_QualifiedNamePref (Fig.5) emulates a while-loop by simple gotos, in
order to concatenate all Package names, into which the given Enumeration is included.

@en : Enumeration
 (Kernel)

prp : Property
 (Kernel)

upd_BuildAttribString(@prp,@str)

@prp : Property
 (Kernel)

atlab : Label
 (graphDiagram)
{diagElementKind_="AttributeLabel"}
text:=@str

{single}
ch : Changes
 (general)

{update usage of Enum as
attribute type (in Attribute labels)}

@en : Enumeration
[1]

(Kernel)

@str : String

typed

changes

present

Figure 4. upd_UpdateEnumReferences procedure

pck : Package
 (Kernel)

@el : PackagableElement
 (Kernel)

pck2 : Package
 (Kernel)

@pack1 : Package
 (Kernel)

@str:=@pack1.name+"::"+@str

@pack1:=@pck @pack1:=@pck2

@str:=""

@el : PackagableElement
[1]

(Kernel)

@str : String
[2]

@pack1 : Package
(Kernel)

ow ningPackage
{1}

ow ningPackage
{1}

{ELSE}

{ELSE}

Figure 5. utl_QualifiedNamePref procedure

